XinXiKuaiBaoYuan/django-backend/venv/lib/python3.9/site-packages/openai/resources/embeddings.py

224 lines
9.0 KiB
Python
Raw Normal View History

# File generated from our OpenAPI spec by Stainless.
from __future__ import annotations
import base64
from typing import TYPE_CHECKING, List, Union, cast
from typing_extensions import Literal
import httpx
from ..types import CreateEmbeddingResponse, embedding_create_params
from .._types import NOT_GIVEN, Body, Query, Headers, NotGiven
from .._utils import is_given, maybe_transform
from .._extras import numpy as np
from .._extras import has_numpy
from .._resource import SyncAPIResource, AsyncAPIResource
from .._response import to_raw_response_wrapper, async_to_raw_response_wrapper
from .._base_client import make_request_options
if TYPE_CHECKING:
from .._client import OpenAI, AsyncOpenAI
__all__ = ["Embeddings", "AsyncEmbeddings"]
class Embeddings(SyncAPIResource):
with_raw_response: EmbeddingsWithRawResponse
def __init__(self, client: OpenAI) -> None:
super().__init__(client)
self.with_raw_response = EmbeddingsWithRawResponse(self)
def create(
self,
*,
input: Union[str, List[str], List[int], List[List[int]]],
model: Union[str, Literal["text-embedding-ada-002"]],
encoding_format: Literal["float", "base64"] | NotGiven = NOT_GIVEN,
user: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> CreateEmbeddingResponse:
"""
Creates an embedding vector representing the input text.
Args:
input: Input text to embed, encoded as a string or array of tokens. To embed multiple
inputs in a single request, pass an array of strings or array of token arrays.
The input must not exceed the max input tokens for the model (8192 tokens for
`text-embedding-ada-002`) and cannot be an empty string.
[Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken)
for counting tokens.
model: ID of the model to use. You can use the
[List models](https://platform.openai.com/docs/api-reference/models/list) API to
see all of your available models, or see our
[Model overview](https://platform.openai.com/docs/models/overview) for
descriptions of them.
encoding_format: The format to return the embeddings in. Can be either `float` or
[`base64`](https://pypi.org/project/pybase64/).
user: A unique identifier representing your end-user, which can help OpenAI to monitor
and detect abuse.
[Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
params = {
"input": input,
"model": model,
"user": user,
"encoding_format": encoding_format,
}
if not is_given(encoding_format) and has_numpy():
params["encoding_format"] = "base64"
def parser(obj: CreateEmbeddingResponse) -> CreateEmbeddingResponse:
if is_given(encoding_format):
# don't modify the response object if a user explicitly asked for a format
return obj
for embedding in obj.data:
data = cast(object, embedding.embedding)
if not isinstance(data, str):
# numpy is not installed / base64 optimisation isn't enabled for this model yet
continue
embedding.embedding = np.frombuffer( # type: ignore[no-untyped-call]
base64.b64decode(data), dtype="float32"
).tolist()
return obj
return self._post(
"/embeddings",
body=maybe_transform(params, embedding_create_params.EmbeddingCreateParams),
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
post_parser=parser,
),
cast_to=CreateEmbeddingResponse,
)
class AsyncEmbeddings(AsyncAPIResource):
with_raw_response: AsyncEmbeddingsWithRawResponse
def __init__(self, client: AsyncOpenAI) -> None:
super().__init__(client)
self.with_raw_response = AsyncEmbeddingsWithRawResponse(self)
async def create(
self,
*,
input: Union[str, List[str], List[int], List[List[int]]],
model: Union[str, Literal["text-embedding-ada-002"]],
encoding_format: Literal["float", "base64"] | NotGiven = NOT_GIVEN,
user: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> CreateEmbeddingResponse:
"""
Creates an embedding vector representing the input text.
Args:
input: Input text to embed, encoded as a string or array of tokens. To embed multiple
inputs in a single request, pass an array of strings or array of token arrays.
The input must not exceed the max input tokens for the model (8192 tokens for
`text-embedding-ada-002`) and cannot be an empty string.
[Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken)
for counting tokens.
model: ID of the model to use. You can use the
[List models](https://platform.openai.com/docs/api-reference/models/list) API to
see all of your available models, or see our
[Model overview](https://platform.openai.com/docs/models/overview) for
descriptions of them.
encoding_format: The format to return the embeddings in. Can be either `float` or
[`base64`](https://pypi.org/project/pybase64/).
user: A unique identifier representing your end-user, which can help OpenAI to monitor
and detect abuse.
[Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
params = {
"input": input,
"model": model,
"user": user,
"encoding_format": encoding_format,
}
if not is_given(encoding_format) and has_numpy():
params["encoding_format"] = "base64"
def parser(obj: CreateEmbeddingResponse) -> CreateEmbeddingResponse:
if is_given(encoding_format):
# don't modify the response object if a user explicitly asked for a format
return obj
for embedding in obj.data:
data = cast(object, embedding.embedding)
if not isinstance(data, str):
# numpy is not installed / base64 optimisation isn't enabled for this model yet
continue
embedding.embedding = np.frombuffer( # type: ignore[no-untyped-call]
base64.b64decode(data), dtype="float32"
).tolist()
return obj
return await self._post(
"/embeddings",
body=maybe_transform(params, embedding_create_params.EmbeddingCreateParams),
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
post_parser=parser,
),
cast_to=CreateEmbeddingResponse,
)
class EmbeddingsWithRawResponse:
def __init__(self, embeddings: Embeddings) -> None:
self.create = to_raw_response_wrapper(
embeddings.create,
)
class AsyncEmbeddingsWithRawResponse:
def __init__(self, embeddings: AsyncEmbeddings) -> None:
self.create = async_to_raw_response_wrapper(
embeddings.create,
)