# File generated from our OpenAPI spec by Stainless. from __future__ import annotations from typing import TYPE_CHECKING, Union, Mapping, cast from typing_extensions import Literal import httpx from ..._types import NOT_GIVEN, Body, Query, Headers, NotGiven, FileTypes from ..._utils import extract_files, maybe_transform, deepcopy_minimal from ..._resource import SyncAPIResource, AsyncAPIResource from ..._response import to_raw_response_wrapper, async_to_raw_response_wrapper from ...types.audio import Transcription, transcription_create_params from ..._base_client import make_request_options if TYPE_CHECKING: from ..._client import OpenAI, AsyncOpenAI __all__ = ["Transcriptions", "AsyncTranscriptions"] class Transcriptions(SyncAPIResource): with_raw_response: TranscriptionsWithRawResponse def __init__(self, client: OpenAI) -> None: super().__init__(client) self.with_raw_response = TranscriptionsWithRawResponse(self) def create( self, *, file: FileTypes, model: Union[str, Literal["whisper-1"]], language: str | NotGiven = NOT_GIVEN, prompt: str | NotGiven = NOT_GIVEN, response_format: Literal["json", "text", "srt", "verbose_json", "vtt"] | NotGiven = NOT_GIVEN, temperature: float | NotGiven = NOT_GIVEN, # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. # The extra values given here take precedence over values defined on the client or passed to this method. extra_headers: Headers | None = None, extra_query: Query | None = None, extra_body: Body | None = None, timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, ) -> Transcription: """ Transcribes audio into the input language. Args: file: The audio file object (not file name) to transcribe, in one of these formats: flac, mp3, mp4, mpeg, mpga, m4a, ogg, wav, or webm. model: ID of the model to use. Only `whisper-1` is currently available. language: The language of the input audio. Supplying the input language in [ISO-639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) format will improve accuracy and latency. prompt: An optional text to guide the model's style or continue a previous audio segment. The [prompt](https://platform.openai.com/docs/guides/speech-to-text/prompting) should match the audio language. response_format: The format of the transcript output, in one of these options: `json`, `text`, `srt`, `verbose_json`, or `vtt`. temperature: The sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use [log probability](https://en.wikipedia.org/wiki/Log_probability) to automatically increase the temperature until certain thresholds are hit. extra_headers: Send extra headers extra_query: Add additional query parameters to the request extra_body: Add additional JSON properties to the request timeout: Override the client-level default timeout for this request, in seconds """ body = deepcopy_minimal( { "file": file, "model": model, "language": language, "prompt": prompt, "response_format": response_format, "temperature": temperature, } ) files = extract_files(cast(Mapping[str, object], body), paths=[["file"]]) if files: # It should be noted that the actual Content-Type header that will be # sent to the server will contain a `boundary` parameter, e.g. # multipart/form-data; boundary=---abc-- extra_headers = {"Content-Type": "multipart/form-data", **(extra_headers or {})} return self._post( "/audio/transcriptions", body=maybe_transform(body, transcription_create_params.TranscriptionCreateParams), files=files, options=make_request_options( extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout ), cast_to=Transcription, ) class AsyncTranscriptions(AsyncAPIResource): with_raw_response: AsyncTranscriptionsWithRawResponse def __init__(self, client: AsyncOpenAI) -> None: super().__init__(client) self.with_raw_response = AsyncTranscriptionsWithRawResponse(self) async def create( self, *, file: FileTypes, model: Union[str, Literal["whisper-1"]], language: str | NotGiven = NOT_GIVEN, prompt: str | NotGiven = NOT_GIVEN, response_format: Literal["json", "text", "srt", "verbose_json", "vtt"] | NotGiven = NOT_GIVEN, temperature: float | NotGiven = NOT_GIVEN, # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. # The extra values given here take precedence over values defined on the client or passed to this method. extra_headers: Headers | None = None, extra_query: Query | None = None, extra_body: Body | None = None, timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, ) -> Transcription: """ Transcribes audio into the input language. Args: file: The audio file object (not file name) to transcribe, in one of these formats: flac, mp3, mp4, mpeg, mpga, m4a, ogg, wav, or webm. model: ID of the model to use. Only `whisper-1` is currently available. language: The language of the input audio. Supplying the input language in [ISO-639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) format will improve accuracy and latency. prompt: An optional text to guide the model's style or continue a previous audio segment. The [prompt](https://platform.openai.com/docs/guides/speech-to-text/prompting) should match the audio language. response_format: The format of the transcript output, in one of these options: `json`, `text`, `srt`, `verbose_json`, or `vtt`. temperature: The sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use [log probability](https://en.wikipedia.org/wiki/Log_probability) to automatically increase the temperature until certain thresholds are hit. extra_headers: Send extra headers extra_query: Add additional query parameters to the request extra_body: Add additional JSON properties to the request timeout: Override the client-level default timeout for this request, in seconds """ body = deepcopy_minimal( { "file": file, "model": model, "language": language, "prompt": prompt, "response_format": response_format, "temperature": temperature, } ) files = extract_files(cast(Mapping[str, object], body), paths=[["file"]]) if files: # It should be noted that the actual Content-Type header that will be # sent to the server will contain a `boundary` parameter, e.g. # multipart/form-data; boundary=---abc-- extra_headers = {"Content-Type": "multipart/form-data", **(extra_headers or {})} return await self._post( "/audio/transcriptions", body=maybe_transform(body, transcription_create_params.TranscriptionCreateParams), files=files, options=make_request_options( extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout ), cast_to=Transcription, ) class TranscriptionsWithRawResponse: def __init__(self, transcriptions: Transcriptions) -> None: self.create = to_raw_response_wrapper( transcriptions.create, ) class AsyncTranscriptionsWithRawResponse: def __init__(self, transcriptions: AsyncTranscriptions) -> None: self.create = async_to_raw_response_wrapper( transcriptions.create, )