224 lines
9.0 KiB
Python
224 lines
9.0 KiB
Python
# File generated from our OpenAPI spec by Stainless.
|
|
|
|
from __future__ import annotations
|
|
|
|
import base64
|
|
from typing import TYPE_CHECKING, List, Union, cast
|
|
from typing_extensions import Literal
|
|
|
|
import httpx
|
|
|
|
from ..types import CreateEmbeddingResponse, embedding_create_params
|
|
from .._types import NOT_GIVEN, Body, Query, Headers, NotGiven
|
|
from .._utils import is_given, maybe_transform
|
|
from .._extras import numpy as np
|
|
from .._extras import has_numpy
|
|
from .._resource import SyncAPIResource, AsyncAPIResource
|
|
from .._response import to_raw_response_wrapper, async_to_raw_response_wrapper
|
|
from .._base_client import make_request_options
|
|
|
|
if TYPE_CHECKING:
|
|
from .._client import OpenAI, AsyncOpenAI
|
|
|
|
__all__ = ["Embeddings", "AsyncEmbeddings"]
|
|
|
|
|
|
class Embeddings(SyncAPIResource):
|
|
with_raw_response: EmbeddingsWithRawResponse
|
|
|
|
def __init__(self, client: OpenAI) -> None:
|
|
super().__init__(client)
|
|
self.with_raw_response = EmbeddingsWithRawResponse(self)
|
|
|
|
def create(
|
|
self,
|
|
*,
|
|
input: Union[str, List[str], List[int], List[List[int]]],
|
|
model: Union[str, Literal["text-embedding-ada-002"]],
|
|
encoding_format: Literal["float", "base64"] | NotGiven = NOT_GIVEN,
|
|
user: str | NotGiven = NOT_GIVEN,
|
|
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
|
|
# The extra values given here take precedence over values defined on the client or passed to this method.
|
|
extra_headers: Headers | None = None,
|
|
extra_query: Query | None = None,
|
|
extra_body: Body | None = None,
|
|
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
|
|
) -> CreateEmbeddingResponse:
|
|
"""
|
|
Creates an embedding vector representing the input text.
|
|
|
|
Args:
|
|
input: Input text to embed, encoded as a string or array of tokens. To embed multiple
|
|
inputs in a single request, pass an array of strings or array of token arrays.
|
|
The input must not exceed the max input tokens for the model (8192 tokens for
|
|
`text-embedding-ada-002`) and cannot be an empty string.
|
|
[Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken)
|
|
for counting tokens.
|
|
|
|
model: ID of the model to use. You can use the
|
|
[List models](https://platform.openai.com/docs/api-reference/models/list) API to
|
|
see all of your available models, or see our
|
|
[Model overview](https://platform.openai.com/docs/models/overview) for
|
|
descriptions of them.
|
|
|
|
encoding_format: The format to return the embeddings in. Can be either `float` or
|
|
[`base64`](https://pypi.org/project/pybase64/).
|
|
|
|
user: A unique identifier representing your end-user, which can help OpenAI to monitor
|
|
and detect abuse.
|
|
[Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
|
|
|
|
extra_headers: Send extra headers
|
|
|
|
extra_query: Add additional query parameters to the request
|
|
|
|
extra_body: Add additional JSON properties to the request
|
|
|
|
timeout: Override the client-level default timeout for this request, in seconds
|
|
"""
|
|
params = {
|
|
"input": input,
|
|
"model": model,
|
|
"user": user,
|
|
"encoding_format": encoding_format,
|
|
}
|
|
if not is_given(encoding_format) and has_numpy():
|
|
params["encoding_format"] = "base64"
|
|
|
|
def parser(obj: CreateEmbeddingResponse) -> CreateEmbeddingResponse:
|
|
if is_given(encoding_format):
|
|
# don't modify the response object if a user explicitly asked for a format
|
|
return obj
|
|
|
|
for embedding in obj.data:
|
|
data = cast(object, embedding.embedding)
|
|
if not isinstance(data, str):
|
|
# numpy is not installed / base64 optimisation isn't enabled for this model yet
|
|
continue
|
|
|
|
embedding.embedding = np.frombuffer( # type: ignore[no-untyped-call]
|
|
base64.b64decode(data), dtype="float32"
|
|
).tolist()
|
|
|
|
return obj
|
|
|
|
return self._post(
|
|
"/embeddings",
|
|
body=maybe_transform(params, embedding_create_params.EmbeddingCreateParams),
|
|
options=make_request_options(
|
|
extra_headers=extra_headers,
|
|
extra_query=extra_query,
|
|
extra_body=extra_body,
|
|
timeout=timeout,
|
|
post_parser=parser,
|
|
),
|
|
cast_to=CreateEmbeddingResponse,
|
|
)
|
|
|
|
|
|
class AsyncEmbeddings(AsyncAPIResource):
|
|
with_raw_response: AsyncEmbeddingsWithRawResponse
|
|
|
|
def __init__(self, client: AsyncOpenAI) -> None:
|
|
super().__init__(client)
|
|
self.with_raw_response = AsyncEmbeddingsWithRawResponse(self)
|
|
|
|
async def create(
|
|
self,
|
|
*,
|
|
input: Union[str, List[str], List[int], List[List[int]]],
|
|
model: Union[str, Literal["text-embedding-ada-002"]],
|
|
encoding_format: Literal["float", "base64"] | NotGiven = NOT_GIVEN,
|
|
user: str | NotGiven = NOT_GIVEN,
|
|
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
|
|
# The extra values given here take precedence over values defined on the client or passed to this method.
|
|
extra_headers: Headers | None = None,
|
|
extra_query: Query | None = None,
|
|
extra_body: Body | None = None,
|
|
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
|
|
) -> CreateEmbeddingResponse:
|
|
"""
|
|
Creates an embedding vector representing the input text.
|
|
|
|
Args:
|
|
input: Input text to embed, encoded as a string or array of tokens. To embed multiple
|
|
inputs in a single request, pass an array of strings or array of token arrays.
|
|
The input must not exceed the max input tokens for the model (8192 tokens for
|
|
`text-embedding-ada-002`) and cannot be an empty string.
|
|
[Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken)
|
|
for counting tokens.
|
|
|
|
model: ID of the model to use. You can use the
|
|
[List models](https://platform.openai.com/docs/api-reference/models/list) API to
|
|
see all of your available models, or see our
|
|
[Model overview](https://platform.openai.com/docs/models/overview) for
|
|
descriptions of them.
|
|
|
|
encoding_format: The format to return the embeddings in. Can be either `float` or
|
|
[`base64`](https://pypi.org/project/pybase64/).
|
|
|
|
user: A unique identifier representing your end-user, which can help OpenAI to monitor
|
|
and detect abuse.
|
|
[Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
|
|
|
|
extra_headers: Send extra headers
|
|
|
|
extra_query: Add additional query parameters to the request
|
|
|
|
extra_body: Add additional JSON properties to the request
|
|
|
|
timeout: Override the client-level default timeout for this request, in seconds
|
|
"""
|
|
params = {
|
|
"input": input,
|
|
"model": model,
|
|
"user": user,
|
|
"encoding_format": encoding_format,
|
|
}
|
|
if not is_given(encoding_format) and has_numpy():
|
|
params["encoding_format"] = "base64"
|
|
|
|
def parser(obj: CreateEmbeddingResponse) -> CreateEmbeddingResponse:
|
|
if is_given(encoding_format):
|
|
# don't modify the response object if a user explicitly asked for a format
|
|
return obj
|
|
|
|
for embedding in obj.data:
|
|
data = cast(object, embedding.embedding)
|
|
if not isinstance(data, str):
|
|
# numpy is not installed / base64 optimisation isn't enabled for this model yet
|
|
continue
|
|
|
|
embedding.embedding = np.frombuffer( # type: ignore[no-untyped-call]
|
|
base64.b64decode(data), dtype="float32"
|
|
).tolist()
|
|
|
|
return obj
|
|
|
|
return await self._post(
|
|
"/embeddings",
|
|
body=maybe_transform(params, embedding_create_params.EmbeddingCreateParams),
|
|
options=make_request_options(
|
|
extra_headers=extra_headers,
|
|
extra_query=extra_query,
|
|
extra_body=extra_body,
|
|
timeout=timeout,
|
|
post_parser=parser,
|
|
),
|
|
cast_to=CreateEmbeddingResponse,
|
|
)
|
|
|
|
|
|
class EmbeddingsWithRawResponse:
|
|
def __init__(self, embeddings: Embeddings) -> None:
|
|
self.create = to_raw_response_wrapper(
|
|
embeddings.create,
|
|
)
|
|
|
|
|
|
class AsyncEmbeddingsWithRawResponse:
|
|
def __init__(self, embeddings: AsyncEmbeddings) -> None:
|
|
self.create = async_to_raw_response_wrapper(
|
|
embeddings.create,
|
|
)
|