XinXiKuaiBaoYuan/django-backend/venv/lib/python3.9/site-packages/openai/_models.py

475 lines
16 KiB
Python

from __future__ import annotations
import inspect
from typing import TYPE_CHECKING, Any, Type, Union, Generic, TypeVar, Callable, cast
from datetime import date, datetime
from typing_extensions import (
Unpack,
Literal,
ClassVar,
Protocol,
Required,
TypedDict,
final,
override,
runtime_checkable,
)
import pydantic
import pydantic.generics
from pydantic.fields import FieldInfo
from ._types import (
Body,
IncEx,
Query,
ModelT,
Headers,
Timeout,
NotGiven,
AnyMapping,
HttpxRequestFiles,
)
from ._utils import (
is_list,
is_given,
is_mapping,
parse_date,
parse_datetime,
strip_not_given,
)
from ._compat import PYDANTIC_V2, ConfigDict
from ._compat import GenericModel as BaseGenericModel
from ._compat import (
get_args,
is_union,
parse_obj,
get_origin,
is_literal_type,
get_model_config,
get_model_fields,
field_get_default,
)
from ._constants import RAW_RESPONSE_HEADER
__all__ = ["BaseModel", "GenericModel"]
_T = TypeVar("_T")
@runtime_checkable
class _ConfigProtocol(Protocol):
allow_population_by_field_name: bool
class BaseModel(pydantic.BaseModel):
if PYDANTIC_V2:
model_config: ClassVar[ConfigDict] = ConfigDict(extra="allow")
else:
@property
@override
def model_fields_set(self) -> set[str]:
# a forwards-compat shim for pydantic v2
return self.__fields_set__ # type: ignore
class Config(pydantic.BaseConfig): # pyright: ignore[reportDeprecated]
extra: Any = pydantic.Extra.allow # type: ignore
@override
def __str__(self) -> str:
# mypy complains about an invalid self arg
return f'{self.__repr_name__()}({self.__repr_str__(", ")})' # type: ignore[misc]
# Override the 'construct' method in a way that supports recursive parsing without validation.
# Based on https://github.com/samuelcolvin/pydantic/issues/1168#issuecomment-817742836.
@classmethod
@override
def construct(
cls: Type[ModelT],
_fields_set: set[str] | None = None,
**values: object,
) -> ModelT:
m = cls.__new__(cls)
fields_values: dict[str, object] = {}
config = get_model_config(cls)
populate_by_name = (
config.allow_population_by_field_name
if isinstance(config, _ConfigProtocol)
else config.get("populate_by_name")
)
if _fields_set is None:
_fields_set = set()
model_fields = get_model_fields(cls)
for name, field in model_fields.items():
key = field.alias
if key is None or (key not in values and populate_by_name):
key = name
if key in values:
fields_values[name] = _construct_field(value=values[key], field=field, key=key)
_fields_set.add(name)
else:
fields_values[name] = field_get_default(field)
_extra = {}
for key, value in values.items():
if key not in model_fields:
if PYDANTIC_V2:
_extra[key] = value
else:
_fields_set.add(key)
fields_values[key] = value
object.__setattr__(m, "__dict__", fields_values)
if PYDANTIC_V2:
# these properties are copied from Pydantic's `model_construct()` method
object.__setattr__(m, "__pydantic_private__", None)
object.__setattr__(m, "__pydantic_extra__", _extra)
object.__setattr__(m, "__pydantic_fields_set__", _fields_set)
else:
# init_private_attributes() does not exist in v2
m._init_private_attributes() # type: ignore
# copied from Pydantic v1's `construct()` method
object.__setattr__(m, "__fields_set__", _fields_set)
return m
if not TYPE_CHECKING:
# type checkers incorrectly complain about this assignment
# because the type signatures are technically different
# although not in practice
model_construct = construct
if not PYDANTIC_V2:
# we define aliases for some of the new pydantic v2 methods so
# that we can just document these methods without having to specify
# a specific pydantic version as some users may not know which
# pydantic version they are currently using
@override
def model_dump(
self,
*,
mode: Literal["json", "python"] | str = "python",
include: IncEx = None,
exclude: IncEx = None,
by_alias: bool = False,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
round_trip: bool = False,
warnings: bool = True,
) -> dict[str, Any]:
"""Usage docs: https://docs.pydantic.dev/2.4/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Args:
mode: The mode in which `to_python` should run.
If mode is 'json', the dictionary will only contain JSON serializable types.
If mode is 'python', the dictionary may contain any Python objects.
include: A list of fields to include in the output.
exclude: A list of fields to exclude from the output.
by_alias: Whether to use the field's alias in the dictionary key if defined.
exclude_unset: Whether to exclude fields that are unset or None from the output.
exclude_defaults: Whether to exclude fields that are set to their default value from the output.
exclude_none: Whether to exclude fields that have a value of `None` from the output.
round_trip: Whether to enable serialization and deserialization round-trip support.
warnings: Whether to log warnings when invalid fields are encountered.
Returns:
A dictionary representation of the model.
"""
if mode != "python":
raise ValueError("mode is only supported in Pydantic v2")
if round_trip != False:
raise ValueError("round_trip is only supported in Pydantic v2")
if warnings != True:
raise ValueError("warnings is only supported in Pydantic v2")
return super().dict( # pyright: ignore[reportDeprecated]
include=include,
exclude=exclude,
by_alias=by_alias,
exclude_unset=exclude_unset,
exclude_defaults=exclude_defaults,
exclude_none=exclude_none,
)
@override
def model_dump_json(
self,
*,
indent: int | None = None,
include: IncEx = None,
exclude: IncEx = None,
by_alias: bool = False,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
round_trip: bool = False,
warnings: bool = True,
) -> str:
"""Usage docs: https://docs.pydantic.dev/2.4/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydantic's `to_json` method.
Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact.
include: Field(s) to include in the JSON output. Can take either a string or set of strings.
exclude: Field(s) to exclude from the JSON output. Can take either a string or set of strings.
by_alias: Whether to serialize using field aliases.
exclude_unset: Whether to exclude fields that have not been explicitly set.
exclude_defaults: Whether to exclude fields that have the default value.
exclude_none: Whether to exclude fields that have a value of `None`.
round_trip: Whether to use serialization/deserialization between JSON and class instance.
warnings: Whether to show any warnings that occurred during serialization.
Returns:
A JSON string representation of the model.
"""
if round_trip != False:
raise ValueError("round_trip is only supported in Pydantic v2")
if warnings != True:
raise ValueError("warnings is only supported in Pydantic v2")
return super().json( # type: ignore[reportDeprecated]
indent=indent,
include=include,
exclude=exclude,
by_alias=by_alias,
exclude_unset=exclude_unset,
exclude_defaults=exclude_defaults,
exclude_none=exclude_none,
)
def _construct_field(value: object, field: FieldInfo, key: str) -> object:
if value is None:
return field_get_default(field)
if PYDANTIC_V2:
type_ = field.annotation
else:
type_ = cast(type, field.outer_type_) # type: ignore
if type_ is None:
raise RuntimeError(f"Unexpected field type is None for {key}")
return construct_type(value=value, type_=type_)
def is_basemodel(type_: type) -> bool:
"""Returns whether or not the given type is either a `BaseModel` or a union of `BaseModel`"""
origin = get_origin(type_) or type_
if is_union(type_):
for variant in get_args(type_):
if is_basemodel(variant):
return True
return False
return issubclass(origin, BaseModel) or issubclass(origin, GenericModel)
def construct_type(*, value: object, type_: type) -> object:
"""Loose coercion to the expected type with construction of nested values.
If the given value does not match the expected type then it is returned as-is.
"""
# we need to use the origin class for any types that are subscripted generics
# e.g. Dict[str, object]
origin = get_origin(type_) or type_
args = get_args(type_)
if is_union(origin):
try:
return validate_type(type_=type_, value=value)
except Exception:
pass
# if the data is not valid, use the first variant that doesn't fail while deserializing
for variant in args:
try:
return construct_type(value=value, type_=variant)
except Exception:
continue
raise RuntimeError(f"Could not convert data into a valid instance of {type_}")
if origin == dict:
if not is_mapping(value):
return value
_, items_type = get_args(type_) # Dict[_, items_type]
return {key: construct_type(value=item, type_=items_type) for key, item in value.items()}
if not is_literal_type(type_) and (issubclass(origin, BaseModel) or issubclass(origin, GenericModel)):
if is_list(value):
return [cast(Any, type_).construct(**entry) if is_mapping(entry) else entry for entry in value]
if is_mapping(value):
if issubclass(type_, BaseModel):
return type_.construct(**value) # type: ignore[arg-type]
return cast(Any, type_).construct(**value)
if origin == list:
if not is_list(value):
return value
inner_type = args[0] # List[inner_type]
return [construct_type(value=entry, type_=inner_type) for entry in value]
if origin == float:
if isinstance(value, int):
coerced = float(value)
if coerced != value:
return value
return coerced
return value
if type_ == datetime:
try:
return parse_datetime(value) # type: ignore
except Exception:
return value
if type_ == date:
try:
return parse_date(value) # type: ignore
except Exception:
return value
return value
def validate_type(*, type_: type[_T], value: object) -> _T:
"""Strict validation that the given value matches the expected type"""
if inspect.isclass(type_) and issubclass(type_, pydantic.BaseModel):
return cast(_T, parse_obj(type_, value))
return cast(_T, _validate_non_model_type(type_=type_, value=value))
# our use of subclasssing here causes weirdness for type checkers,
# so we just pretend that we don't subclass
if TYPE_CHECKING:
GenericModel = BaseModel
else:
class GenericModel(BaseGenericModel, BaseModel):
pass
if PYDANTIC_V2:
from pydantic import TypeAdapter
def _validate_non_model_type(*, type_: type[_T], value: object) -> _T:
return TypeAdapter(type_).validate_python(value)
elif not TYPE_CHECKING: # TODO: condition is weird
class RootModel(GenericModel, Generic[_T]):
"""Used as a placeholder to easily convert runtime types to a Pydantic format
to provide validation.
For example:
```py
validated = RootModel[int](__root__='5').__root__
# validated: 5
```
"""
__root__: _T
def _validate_non_model_type(*, type_: type[_T], value: object) -> _T:
model = _create_pydantic_model(type_).validate(value)
return cast(_T, model.__root__)
def _create_pydantic_model(type_: _T) -> Type[RootModel[_T]]:
return RootModel[type_] # type: ignore
class FinalRequestOptionsInput(TypedDict, total=False):
method: Required[str]
url: Required[str]
params: Query
headers: Headers
max_retries: int
timeout: float | Timeout | None
files: HttpxRequestFiles | None
idempotency_key: str
json_data: Body
extra_json: AnyMapping
@final
class FinalRequestOptions(pydantic.BaseModel):
method: str
url: str
params: Query = {}
headers: Union[Headers, NotGiven] = NotGiven()
max_retries: Union[int, NotGiven] = NotGiven()
timeout: Union[float, Timeout, None, NotGiven] = NotGiven()
files: Union[HttpxRequestFiles, None] = None
idempotency_key: Union[str, None] = None
post_parser: Union[Callable[[Any], Any], NotGiven] = NotGiven()
# It should be noted that we cannot use `json` here as that would override
# a BaseModel method in an incompatible fashion.
json_data: Union[Body, None] = None
extra_json: Union[AnyMapping, None] = None
if PYDANTIC_V2:
model_config: ClassVar[ConfigDict] = ConfigDict(arbitrary_types_allowed=True)
else:
class Config(pydantic.BaseConfig): # pyright: ignore[reportDeprecated]
arbitrary_types_allowed: bool = True
def get_max_retries(self, max_retries: int) -> int:
if isinstance(self.max_retries, NotGiven):
return max_retries
return self.max_retries
def _strip_raw_response_header(self) -> None:
if not is_given(self.headers):
return
if self.headers.get(RAW_RESPONSE_HEADER):
self.headers = {**self.headers}
self.headers.pop(RAW_RESPONSE_HEADER)
# override the `construct` method so that we can run custom transformations.
# this is necessary as we don't want to do any actual runtime type checking
# (which means we can't use validators) but we do want to ensure that `NotGiven`
# values are not present
#
# type ignore required because we're adding explicit types to `**values`
@classmethod
def construct( # type: ignore
cls,
_fields_set: set[str] | None = None,
**values: Unpack[FinalRequestOptionsInput],
) -> FinalRequestOptions:
kwargs: dict[str, Any] = {
# we unconditionally call `strip_not_given` on any value
# as it will just ignore any non-mapping types
key: strip_not_given(value)
for key, value in values.items()
}
if PYDANTIC_V2:
return super().model_construct(_fields_set, **kwargs)
return cast(FinalRequestOptions, super().construct(_fields_set, **kwargs)) # pyright: ignore[reportDeprecated]
if not TYPE_CHECKING:
# type checkers incorrectly complain about this assignment
model_construct = construct