sdk/dingding-sdk/alibabacloud_dingtalk/algo_1_0/models.py

730 lines
23 KiB
Python
Raw Normal View History

2025-08-18 09:05:41 +00:00
# -*- coding: utf-8 -*-
# This file is auto-generated, don't edit it. Thanks.
from Tea.model import TeaModel
from typing import Dict, List
class NlpWordDistinguishHeaders(TeaModel):
def __init__(
self,
common_headers: Dict[str, str] = None,
x_acs_dingtalk_access_token: str = None,
):
self.common_headers = common_headers
self.x_acs_dingtalk_access_token = x_acs_dingtalk_access_token
def validate(self):
pass
def to_map(self):
_map = super().to_map()
if _map is not None:
return _map
result = dict()
if self.common_headers is not None:
result['commonHeaders'] = self.common_headers
if self.x_acs_dingtalk_access_token is not None:
result['x-acs-dingtalk-access-token'] = self.x_acs_dingtalk_access_token
return result
def from_map(self, m: dict = None):
m = m or dict()
if m.get('commonHeaders') is not None:
self.common_headers = m.get('commonHeaders')
if m.get('x-acs-dingtalk-access-token') is not None:
self.x_acs_dingtalk_access_token = m.get('x-acs-dingtalk-access-token')
return self
class NlpWordDistinguishRequestAttachExtractDecisionInfo(TeaModel):
def __init__(
self,
black_words: List[str] = None,
candidate_words: List[str] = None,
corp_id: str = None,
dept_ids: List[str] = None,
user_id: str = None,
):
self.black_words = black_words
self.candidate_words = candidate_words
# This parameter is required.
self.corp_id = corp_id
# This parameter is required.
self.dept_ids = dept_ids
# This parameter is required.
self.user_id = user_id
def validate(self):
pass
def to_map(self):
_map = super().to_map()
if _map is not None:
return _map
result = dict()
if self.black_words is not None:
result['blackWords'] = self.black_words
if self.candidate_words is not None:
result['candidateWords'] = self.candidate_words
if self.corp_id is not None:
result['corpId'] = self.corp_id
if self.dept_ids is not None:
result['deptIds'] = self.dept_ids
if self.user_id is not None:
result['userId'] = self.user_id
return result
def from_map(self, m: dict = None):
m = m or dict()
if m.get('blackWords') is not None:
self.black_words = m.get('blackWords')
if m.get('candidateWords') is not None:
self.candidate_words = m.get('candidateWords')
if m.get('corpId') is not None:
self.corp_id = m.get('corpId')
if m.get('deptIds') is not None:
self.dept_ids = m.get('deptIds')
if m.get('userId') is not None:
self.user_id = m.get('userId')
return self
class NlpWordDistinguishRequest(TeaModel):
def __init__(
self,
attach_extract_decision_info: NlpWordDistinguishRequestAttachExtractDecisionInfo = None,
isv_app_id: str = None,
text: str = None,
):
# This parameter is required.
self.attach_extract_decision_info = attach_extract_decision_info
# This parameter is required.
self.isv_app_id = isv_app_id
# This parameter is required.
self.text = text
def validate(self):
if self.attach_extract_decision_info:
self.attach_extract_decision_info.validate()
def to_map(self):
_map = super().to_map()
if _map is not None:
return _map
result = dict()
if self.attach_extract_decision_info is not None:
result['attachExtractDecisionInfo'] = self.attach_extract_decision_info.to_map()
if self.isv_app_id is not None:
result['isvAppId'] = self.isv_app_id
if self.text is not None:
result['text'] = self.text
return result
def from_map(self, m: dict = None):
m = m or dict()
if m.get('attachExtractDecisionInfo') is not None:
temp_model = NlpWordDistinguishRequestAttachExtractDecisionInfo()
self.attach_extract_decision_info = temp_model.from_map(m['attachExtractDecisionInfo'])
if m.get('isvAppId') is not None:
self.isv_app_id = m.get('isvAppId')
if m.get('text') is not None:
self.text = m.get('text')
return self
class NlpWordDistinguishResponseBodyWordEntities(TeaModel):
def __init__(
self,
word: str = None,
):
self.word = word
def validate(self):
pass
def to_map(self):
_map = super().to_map()
if _map is not None:
return _map
result = dict()
if self.word is not None:
result['word'] = self.word
return result
def from_map(self, m: dict = None):
m = m or dict()
if m.get('word') is not None:
self.word = m.get('word')
return self
class NlpWordDistinguishResponseBody(TeaModel):
def __init__(
self,
request_id: str = None,
word_entities: List[NlpWordDistinguishResponseBodyWordEntities] = None,
):
# This parameter is required.
self.request_id = request_id
self.word_entities = word_entities
def validate(self):
if self.word_entities:
for k in self.word_entities:
if k:
k.validate()
def to_map(self):
_map = super().to_map()
if _map is not None:
return _map
result = dict()
if self.request_id is not None:
result['requestId'] = self.request_id
result['wordEntities'] = []
if self.word_entities is not None:
for k in self.word_entities:
result['wordEntities'].append(k.to_map() if k else None)
return result
def from_map(self, m: dict = None):
m = m or dict()
if m.get('requestId') is not None:
self.request_id = m.get('requestId')
self.word_entities = []
if m.get('wordEntities') is not None:
for k in m.get('wordEntities'):
temp_model = NlpWordDistinguishResponseBodyWordEntities()
self.word_entities.append(temp_model.from_map(k))
return self
class NlpWordDistinguishResponse(TeaModel):
def __init__(
self,
headers: Dict[str, str] = None,
status_code: int = None,
body: NlpWordDistinguishResponseBody = None,
):
self.headers = headers
self.status_code = status_code
self.body = body
def validate(self):
if self.body:
self.body.validate()
def to_map(self):
_map = super().to_map()
if _map is not None:
return _map
result = dict()
if self.headers is not None:
result['headers'] = self.headers
if self.status_code is not None:
result['statusCode'] = self.status_code
if self.body is not None:
result['body'] = self.body.to_map()
return result
def from_map(self, m: dict = None):
m = m or dict()
if m.get('headers') is not None:
self.headers = m.get('headers')
if m.get('statusCode') is not None:
self.status_code = m.get('statusCode')
if m.get('body') is not None:
temp_model = NlpWordDistinguishResponseBody()
self.body = temp_model.from_map(m['body'])
return self
class OkrOpenRecommendHeaders(TeaModel):
def __init__(
self,
common_headers: Dict[str, str] = None,
x_acs_dingtalk_access_token: str = None,
):
self.common_headers = common_headers
self.x_acs_dingtalk_access_token = x_acs_dingtalk_access_token
def validate(self):
pass
def to_map(self):
_map = super().to_map()
if _map is not None:
return _map
result = dict()
if self.common_headers is not None:
result['commonHeaders'] = self.common_headers
if self.x_acs_dingtalk_access_token is not None:
result['x-acs-dingtalk-access-token'] = self.x_acs_dingtalk_access_token
return result
def from_map(self, m: dict = None):
m = m or dict()
if m.get('commonHeaders') is not None:
self.common_headers = m.get('commonHeaders')
if m.get('x-acs-dingtalk-access-token') is not None:
self.x_acs_dingtalk_access_token = m.get('x-acs-dingtalk-access-token')
return self
class OkrOpenRecommendRequestCandidateOkrItemsOkrInfosKeyResultInfos(TeaModel):
def __init__(
self,
kr: str = None,
kr_id: str = None,
words: List[str] = None,
):
self.kr = kr
self.kr_id = kr_id
self.words = words
def validate(self):
pass
def to_map(self):
_map = super().to_map()
if _map is not None:
return _map
result = dict()
if self.kr is not None:
result['kr'] = self.kr
if self.kr_id is not None:
result['krId'] = self.kr_id
if self.words is not None:
result['words'] = self.words
return result
def from_map(self, m: dict = None):
m = m or dict()
if m.get('kr') is not None:
self.kr = m.get('kr')
if m.get('krId') is not None:
self.kr_id = m.get('krId')
if m.get('words') is not None:
self.words = m.get('words')
return self
class OkrOpenRecommendRequestCandidateOkrItemsOkrInfos(TeaModel):
def __init__(
self,
key_result_infos: List[OkrOpenRecommendRequestCandidateOkrItemsOkrInfosKeyResultInfos] = None,
objective: str = None,
objective_id: str = None,
words: List[str] = None,
):
self.key_result_infos = key_result_infos
self.objective = objective
self.objective_id = objective_id
self.words = words
def validate(self):
if self.key_result_infos:
for k in self.key_result_infos:
if k:
k.validate()
def to_map(self):
_map = super().to_map()
if _map is not None:
return _map
result = dict()
result['keyResultInfos'] = []
if self.key_result_infos is not None:
for k in self.key_result_infos:
result['keyResultInfos'].append(k.to_map() if k else None)
if self.objective is not None:
result['objective'] = self.objective
if self.objective_id is not None:
result['objectiveId'] = self.objective_id
if self.words is not None:
result['words'] = self.words
return result
def from_map(self, m: dict = None):
m = m or dict()
self.key_result_infos = []
if m.get('keyResultInfos') is not None:
for k in m.get('keyResultInfos'):
temp_model = OkrOpenRecommendRequestCandidateOkrItemsOkrInfosKeyResultInfos()
self.key_result_infos.append(temp_model.from_map(k))
if m.get('objective') is not None:
self.objective = m.get('objective')
if m.get('objectiveId') is not None:
self.objective_id = m.get('objectiveId')
if m.get('words') is not None:
self.words = m.get('words')
return self
class OkrOpenRecommendRequestCandidateOkrItems(TeaModel):
def __init__(
self,
okr_infos: List[OkrOpenRecommendRequestCandidateOkrItemsOkrInfos] = None,
relation: str = None,
user_id: str = None,
):
self.okr_infos = okr_infos
# This parameter is required.
self.relation = relation
# This parameter is required.
self.user_id = user_id
def validate(self):
if self.okr_infos:
for k in self.okr_infos:
if k:
k.validate()
def to_map(self):
_map = super().to_map()
if _map is not None:
return _map
result = dict()
result['okrInfos'] = []
if self.okr_infos is not None:
for k in self.okr_infos:
result['okrInfos'].append(k.to_map() if k else None)
if self.relation is not None:
result['relation'] = self.relation
if self.user_id is not None:
result['userId'] = self.user_id
return result
def from_map(self, m: dict = None):
m = m or dict()
self.okr_infos = []
if m.get('okrInfos') is not None:
for k in m.get('okrInfos'):
temp_model = OkrOpenRecommendRequestCandidateOkrItemsOkrInfos()
self.okr_infos.append(temp_model.from_map(k))
if m.get('relation') is not None:
self.relation = m.get('relation')
if m.get('userId') is not None:
self.user_id = m.get('userId')
return self
class OkrOpenRecommendRequest(TeaModel):
def __init__(
self,
candidate_okr_items: List[OkrOpenRecommendRequestCandidateOkrItems] = None,
corp_id: str = None,
dept_ids: List[str] = None,
isv_app_id: str = None,
user_id: str = None,
words: List[str] = None,
):
# This parameter is required.
self.candidate_okr_items = candidate_okr_items
# This parameter is required.
self.corp_id = corp_id
# This parameter is required.
self.dept_ids = dept_ids
# This parameter is required.
self.isv_app_id = isv_app_id
# This parameter is required.
self.user_id = user_id
self.words = words
def validate(self):
if self.candidate_okr_items:
for k in self.candidate_okr_items:
if k:
k.validate()
def to_map(self):
_map = super().to_map()
if _map is not None:
return _map
result = dict()
result['candidateOkrItems'] = []
if self.candidate_okr_items is not None:
for k in self.candidate_okr_items:
result['candidateOkrItems'].append(k.to_map() if k else None)
if self.corp_id is not None:
result['corpId'] = self.corp_id
if self.dept_ids is not None:
result['deptIds'] = self.dept_ids
if self.isv_app_id is not None:
result['isvAppId'] = self.isv_app_id
if self.user_id is not None:
result['userId'] = self.user_id
if self.words is not None:
result['words'] = self.words
return result
def from_map(self, m: dict = None):
m = m or dict()
self.candidate_okr_items = []
if m.get('candidateOkrItems') is not None:
for k in m.get('candidateOkrItems'):
temp_model = OkrOpenRecommendRequestCandidateOkrItems()
self.candidate_okr_items.append(temp_model.from_map(k))
if m.get('corpId') is not None:
self.corp_id = m.get('corpId')
if m.get('deptIds') is not None:
self.dept_ids = m.get('deptIds')
if m.get('isvAppId') is not None:
self.isv_app_id = m.get('isvAppId')
if m.get('userId') is not None:
self.user_id = m.get('userId')
if m.get('words') is not None:
self.words = m.get('words')
return self
class OkrOpenRecommendResponseBodyOkrRecommendItemsKrResultRelatedResults(TeaModel):
def __init__(
self,
kr_id: str = None,
semantic_level: int = None,
words: List[str] = None,
):
# This parameter is required.
self.kr_id = kr_id
# This parameter is required.
self.semantic_level = semantic_level
# This parameter is required.
self.words = words
def validate(self):
pass
def to_map(self):
_map = super().to_map()
if _map is not None:
return _map
result = dict()
if self.kr_id is not None:
result['krId'] = self.kr_id
if self.semantic_level is not None:
result['semanticLevel'] = self.semantic_level
if self.words is not None:
result['words'] = self.words
return result
def from_map(self, m: dict = None):
m = m or dict()
if m.get('krId') is not None:
self.kr_id = m.get('krId')
if m.get('semanticLevel') is not None:
self.semantic_level = m.get('semanticLevel')
if m.get('words') is not None:
self.words = m.get('words')
return self
class OkrOpenRecommendResponseBodyOkrRecommendItemsObjectiveRelatedResults(TeaModel):
def __init__(
self,
objective_id: str = None,
semantic_level: int = None,
words: List[str] = None,
):
# This parameter is required.
self.objective_id = objective_id
# This parameter is required.
self.semantic_level = semantic_level
# This parameter is required.
self.words = words
def validate(self):
pass
def to_map(self):
_map = super().to_map()
if _map is not None:
return _map
result = dict()
if self.objective_id is not None:
result['objectiveId'] = self.objective_id
if self.semantic_level is not None:
result['semanticLevel'] = self.semantic_level
if self.words is not None:
result['words'] = self.words
return result
def from_map(self, m: dict = None):
m = m or dict()
if m.get('objectiveId') is not None:
self.objective_id = m.get('objectiveId')
if m.get('semanticLevel') is not None:
self.semantic_level = m.get('semanticLevel')
if m.get('words') is not None:
self.words = m.get('words')
return self
class OkrOpenRecommendResponseBodyOkrRecommendItems(TeaModel):
def __init__(
self,
kr_result_related_results: List[OkrOpenRecommendResponseBodyOkrRecommendItemsKrResultRelatedResults] = None,
objective_related_results: List[OkrOpenRecommendResponseBodyOkrRecommendItemsObjectiveRelatedResults] = None,
related_level: int = None,
semantic_level: int = None,
user_id: str = None,
):
self.kr_result_related_results = kr_result_related_results
self.objective_related_results = objective_related_results
# This parameter is required.
self.related_level = related_level
# This parameter is required.
self.semantic_level = semantic_level
# This parameter is required.
self.user_id = user_id
def validate(self):
if self.kr_result_related_results:
for k in self.kr_result_related_results:
if k:
k.validate()
if self.objective_related_results:
for k in self.objective_related_results:
if k:
k.validate()
def to_map(self):
_map = super().to_map()
if _map is not None:
return _map
result = dict()
result['krResultRelatedResults'] = []
if self.kr_result_related_results is not None:
for k in self.kr_result_related_results:
result['krResultRelatedResults'].append(k.to_map() if k else None)
result['objectiveRelatedResults'] = []
if self.objective_related_results is not None:
for k in self.objective_related_results:
result['objectiveRelatedResults'].append(k.to_map() if k else None)
if self.related_level is not None:
result['relatedLevel'] = self.related_level
if self.semantic_level is not None:
result['semanticLevel'] = self.semantic_level
if self.user_id is not None:
result['userId'] = self.user_id
return result
def from_map(self, m: dict = None):
m = m or dict()
self.kr_result_related_results = []
if m.get('krResultRelatedResults') is not None:
for k in m.get('krResultRelatedResults'):
temp_model = OkrOpenRecommendResponseBodyOkrRecommendItemsKrResultRelatedResults()
self.kr_result_related_results.append(temp_model.from_map(k))
self.objective_related_results = []
if m.get('objectiveRelatedResults') is not None:
for k in m.get('objectiveRelatedResults'):
temp_model = OkrOpenRecommendResponseBodyOkrRecommendItemsObjectiveRelatedResults()
self.objective_related_results.append(temp_model.from_map(k))
if m.get('relatedLevel') is not None:
self.related_level = m.get('relatedLevel')
if m.get('semanticLevel') is not None:
self.semantic_level = m.get('semanticLevel')
if m.get('userId') is not None:
self.user_id = m.get('userId')
return self
class OkrOpenRecommendResponseBody(TeaModel):
def __init__(
self,
okr_recommend_items: List[OkrOpenRecommendResponseBodyOkrRecommendItems] = None,
request_id: str = None,
):
self.okr_recommend_items = okr_recommend_items
# This parameter is required.
self.request_id = request_id
def validate(self):
if self.okr_recommend_items:
for k in self.okr_recommend_items:
if k:
k.validate()
def to_map(self):
_map = super().to_map()
if _map is not None:
return _map
result = dict()
result['okrRecommendItems'] = []
if self.okr_recommend_items is not None:
for k in self.okr_recommend_items:
result['okrRecommendItems'].append(k.to_map() if k else None)
if self.request_id is not None:
result['requestId'] = self.request_id
return result
def from_map(self, m: dict = None):
m = m or dict()
self.okr_recommend_items = []
if m.get('okrRecommendItems') is not None:
for k in m.get('okrRecommendItems'):
temp_model = OkrOpenRecommendResponseBodyOkrRecommendItems()
self.okr_recommend_items.append(temp_model.from_map(k))
if m.get('requestId') is not None:
self.request_id = m.get('requestId')
return self
class OkrOpenRecommendResponse(TeaModel):
def __init__(
self,
headers: Dict[str, str] = None,
status_code: int = None,
body: OkrOpenRecommendResponseBody = None,
):
self.headers = headers
self.status_code = status_code
self.body = body
def validate(self):
if self.body:
self.body.validate()
def to_map(self):
_map = super().to_map()
if _map is not None:
return _map
result = dict()
if self.headers is not None:
result['headers'] = self.headers
if self.status_code is not None:
result['statusCode'] = self.status_code
if self.body is not None:
result['body'] = self.body.to_map()
return result
def from_map(self, m: dict = None):
m = m or dict()
if m.get('headers') is not None:
self.headers = m.get('headers')
if m.get('statusCode') is not None:
self.status_code = m.get('statusCode')
if m.get('body') is not None:
temp_model = OkrOpenRecommendResponseBody()
self.body = temp_model.from_map(m['body'])
return self