# -*- coding: utf-8 -*- # This file is auto-generated, don't edit it. Thanks. from Tea.model import TeaModel from typing import Dict, List class NlpWordDistinguishHeaders(TeaModel): def __init__( self, common_headers: Dict[str, str] = None, x_acs_dingtalk_access_token: str = None, ): self.common_headers = common_headers self.x_acs_dingtalk_access_token = x_acs_dingtalk_access_token def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.common_headers is not None: result['commonHeaders'] = self.common_headers if self.x_acs_dingtalk_access_token is not None: result['x-acs-dingtalk-access-token'] = self.x_acs_dingtalk_access_token return result def from_map(self, m: dict = None): m = m or dict() if m.get('commonHeaders') is not None: self.common_headers = m.get('commonHeaders') if m.get('x-acs-dingtalk-access-token') is not None: self.x_acs_dingtalk_access_token = m.get('x-acs-dingtalk-access-token') return self class NlpWordDistinguishRequestAttachExtractDecisionInfo(TeaModel): def __init__( self, black_words: List[str] = None, candidate_words: List[str] = None, corp_id: str = None, dept_ids: List[str] = None, user_id: str = None, ): self.black_words = black_words self.candidate_words = candidate_words # This parameter is required. self.corp_id = corp_id # This parameter is required. self.dept_ids = dept_ids # This parameter is required. self.user_id = user_id def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.black_words is not None: result['blackWords'] = self.black_words if self.candidate_words is not None: result['candidateWords'] = self.candidate_words if self.corp_id is not None: result['corpId'] = self.corp_id if self.dept_ids is not None: result['deptIds'] = self.dept_ids if self.user_id is not None: result['userId'] = self.user_id return result def from_map(self, m: dict = None): m = m or dict() if m.get('blackWords') is not None: self.black_words = m.get('blackWords') if m.get('candidateWords') is not None: self.candidate_words = m.get('candidateWords') if m.get('corpId') is not None: self.corp_id = m.get('corpId') if m.get('deptIds') is not None: self.dept_ids = m.get('deptIds') if m.get('userId') is not None: self.user_id = m.get('userId') return self class NlpWordDistinguishRequest(TeaModel): def __init__( self, attach_extract_decision_info: NlpWordDistinguishRequestAttachExtractDecisionInfo = None, isv_app_id: str = None, text: str = None, ): # This parameter is required. self.attach_extract_decision_info = attach_extract_decision_info # This parameter is required. self.isv_app_id = isv_app_id # This parameter is required. self.text = text def validate(self): if self.attach_extract_decision_info: self.attach_extract_decision_info.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.attach_extract_decision_info is not None: result['attachExtractDecisionInfo'] = self.attach_extract_decision_info.to_map() if self.isv_app_id is not None: result['isvAppId'] = self.isv_app_id if self.text is not None: result['text'] = self.text return result def from_map(self, m: dict = None): m = m or dict() if m.get('attachExtractDecisionInfo') is not None: temp_model = NlpWordDistinguishRequestAttachExtractDecisionInfo() self.attach_extract_decision_info = temp_model.from_map(m['attachExtractDecisionInfo']) if m.get('isvAppId') is not None: self.isv_app_id = m.get('isvAppId') if m.get('text') is not None: self.text = m.get('text') return self class NlpWordDistinguishResponseBodyWordEntities(TeaModel): def __init__( self, word: str = None, ): self.word = word def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.word is not None: result['word'] = self.word return result def from_map(self, m: dict = None): m = m or dict() if m.get('word') is not None: self.word = m.get('word') return self class NlpWordDistinguishResponseBody(TeaModel): def __init__( self, request_id: str = None, word_entities: List[NlpWordDistinguishResponseBodyWordEntities] = None, ): # This parameter is required. self.request_id = request_id self.word_entities = word_entities def validate(self): if self.word_entities: for k in self.word_entities: if k: k.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['requestId'] = self.request_id result['wordEntities'] = [] if self.word_entities is not None: for k in self.word_entities: result['wordEntities'].append(k.to_map() if k else None) return result def from_map(self, m: dict = None): m = m or dict() if m.get('requestId') is not None: self.request_id = m.get('requestId') self.word_entities = [] if m.get('wordEntities') is not None: for k in m.get('wordEntities'): temp_model = NlpWordDistinguishResponseBodyWordEntities() self.word_entities.append(temp_model.from_map(k)) return self class NlpWordDistinguishResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, status_code: int = None, body: NlpWordDistinguishResponseBody = None, ): self.headers = headers self.status_code = status_code self.body = body def validate(self): if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.status_code is not None: result['statusCode'] = self.status_code if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('statusCode') is not None: self.status_code = m.get('statusCode') if m.get('body') is not None: temp_model = NlpWordDistinguishResponseBody() self.body = temp_model.from_map(m['body']) return self class OkrOpenRecommendHeaders(TeaModel): def __init__( self, common_headers: Dict[str, str] = None, x_acs_dingtalk_access_token: str = None, ): self.common_headers = common_headers self.x_acs_dingtalk_access_token = x_acs_dingtalk_access_token def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.common_headers is not None: result['commonHeaders'] = self.common_headers if self.x_acs_dingtalk_access_token is not None: result['x-acs-dingtalk-access-token'] = self.x_acs_dingtalk_access_token return result def from_map(self, m: dict = None): m = m or dict() if m.get('commonHeaders') is not None: self.common_headers = m.get('commonHeaders') if m.get('x-acs-dingtalk-access-token') is not None: self.x_acs_dingtalk_access_token = m.get('x-acs-dingtalk-access-token') return self class OkrOpenRecommendRequestCandidateOkrItemsOkrInfosKeyResultInfos(TeaModel): def __init__( self, kr: str = None, kr_id: str = None, words: List[str] = None, ): self.kr = kr self.kr_id = kr_id self.words = words def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.kr is not None: result['kr'] = self.kr if self.kr_id is not None: result['krId'] = self.kr_id if self.words is not None: result['words'] = self.words return result def from_map(self, m: dict = None): m = m or dict() if m.get('kr') is not None: self.kr = m.get('kr') if m.get('krId') is not None: self.kr_id = m.get('krId') if m.get('words') is not None: self.words = m.get('words') return self class OkrOpenRecommendRequestCandidateOkrItemsOkrInfos(TeaModel): def __init__( self, key_result_infos: List[OkrOpenRecommendRequestCandidateOkrItemsOkrInfosKeyResultInfos] = None, objective: str = None, objective_id: str = None, words: List[str] = None, ): self.key_result_infos = key_result_infos self.objective = objective self.objective_id = objective_id self.words = words def validate(self): if self.key_result_infos: for k in self.key_result_infos: if k: k.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() result['keyResultInfos'] = [] if self.key_result_infos is not None: for k in self.key_result_infos: result['keyResultInfos'].append(k.to_map() if k else None) if self.objective is not None: result['objective'] = self.objective if self.objective_id is not None: result['objectiveId'] = self.objective_id if self.words is not None: result['words'] = self.words return result def from_map(self, m: dict = None): m = m or dict() self.key_result_infos = [] if m.get('keyResultInfos') is not None: for k in m.get('keyResultInfos'): temp_model = OkrOpenRecommendRequestCandidateOkrItemsOkrInfosKeyResultInfos() self.key_result_infos.append(temp_model.from_map(k)) if m.get('objective') is not None: self.objective = m.get('objective') if m.get('objectiveId') is not None: self.objective_id = m.get('objectiveId') if m.get('words') is not None: self.words = m.get('words') return self class OkrOpenRecommendRequestCandidateOkrItems(TeaModel): def __init__( self, okr_infos: List[OkrOpenRecommendRequestCandidateOkrItemsOkrInfos] = None, relation: str = None, user_id: str = None, ): self.okr_infos = okr_infos # This parameter is required. self.relation = relation # This parameter is required. self.user_id = user_id def validate(self): if self.okr_infos: for k in self.okr_infos: if k: k.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() result['okrInfos'] = [] if self.okr_infos is not None: for k in self.okr_infos: result['okrInfos'].append(k.to_map() if k else None) if self.relation is not None: result['relation'] = self.relation if self.user_id is not None: result['userId'] = self.user_id return result def from_map(self, m: dict = None): m = m or dict() self.okr_infos = [] if m.get('okrInfos') is not None: for k in m.get('okrInfos'): temp_model = OkrOpenRecommendRequestCandidateOkrItemsOkrInfos() self.okr_infos.append(temp_model.from_map(k)) if m.get('relation') is not None: self.relation = m.get('relation') if m.get('userId') is not None: self.user_id = m.get('userId') return self class OkrOpenRecommendRequest(TeaModel): def __init__( self, candidate_okr_items: List[OkrOpenRecommendRequestCandidateOkrItems] = None, corp_id: str = None, dept_ids: List[str] = None, isv_app_id: str = None, user_id: str = None, words: List[str] = None, ): # This parameter is required. self.candidate_okr_items = candidate_okr_items # This parameter is required. self.corp_id = corp_id # This parameter is required. self.dept_ids = dept_ids # This parameter is required. self.isv_app_id = isv_app_id # This parameter is required. self.user_id = user_id self.words = words def validate(self): if self.candidate_okr_items: for k in self.candidate_okr_items: if k: k.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() result['candidateOkrItems'] = [] if self.candidate_okr_items is not None: for k in self.candidate_okr_items: result['candidateOkrItems'].append(k.to_map() if k else None) if self.corp_id is not None: result['corpId'] = self.corp_id if self.dept_ids is not None: result['deptIds'] = self.dept_ids if self.isv_app_id is not None: result['isvAppId'] = self.isv_app_id if self.user_id is not None: result['userId'] = self.user_id if self.words is not None: result['words'] = self.words return result def from_map(self, m: dict = None): m = m or dict() self.candidate_okr_items = [] if m.get('candidateOkrItems') is not None: for k in m.get('candidateOkrItems'): temp_model = OkrOpenRecommendRequestCandidateOkrItems() self.candidate_okr_items.append(temp_model.from_map(k)) if m.get('corpId') is not None: self.corp_id = m.get('corpId') if m.get('deptIds') is not None: self.dept_ids = m.get('deptIds') if m.get('isvAppId') is not None: self.isv_app_id = m.get('isvAppId') if m.get('userId') is not None: self.user_id = m.get('userId') if m.get('words') is not None: self.words = m.get('words') return self class OkrOpenRecommendResponseBodyOkrRecommendItemsKrResultRelatedResults(TeaModel): def __init__( self, kr_id: str = None, semantic_level: int = None, words: List[str] = None, ): # This parameter is required. self.kr_id = kr_id # This parameter is required. self.semantic_level = semantic_level # This parameter is required. self.words = words def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.kr_id is not None: result['krId'] = self.kr_id if self.semantic_level is not None: result['semanticLevel'] = self.semantic_level if self.words is not None: result['words'] = self.words return result def from_map(self, m: dict = None): m = m or dict() if m.get('krId') is not None: self.kr_id = m.get('krId') if m.get('semanticLevel') is not None: self.semantic_level = m.get('semanticLevel') if m.get('words') is not None: self.words = m.get('words') return self class OkrOpenRecommendResponseBodyOkrRecommendItemsObjectiveRelatedResults(TeaModel): def __init__( self, objective_id: str = None, semantic_level: int = None, words: List[str] = None, ): # This parameter is required. self.objective_id = objective_id # This parameter is required. self.semantic_level = semantic_level # This parameter is required. self.words = words def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.objective_id is not None: result['objectiveId'] = self.objective_id if self.semantic_level is not None: result['semanticLevel'] = self.semantic_level if self.words is not None: result['words'] = self.words return result def from_map(self, m: dict = None): m = m or dict() if m.get('objectiveId') is not None: self.objective_id = m.get('objectiveId') if m.get('semanticLevel') is not None: self.semantic_level = m.get('semanticLevel') if m.get('words') is not None: self.words = m.get('words') return self class OkrOpenRecommendResponseBodyOkrRecommendItems(TeaModel): def __init__( self, kr_result_related_results: List[OkrOpenRecommendResponseBodyOkrRecommendItemsKrResultRelatedResults] = None, objective_related_results: List[OkrOpenRecommendResponseBodyOkrRecommendItemsObjectiveRelatedResults] = None, related_level: int = None, semantic_level: int = None, user_id: str = None, ): self.kr_result_related_results = kr_result_related_results self.objective_related_results = objective_related_results # This parameter is required. self.related_level = related_level # This parameter is required. self.semantic_level = semantic_level # This parameter is required. self.user_id = user_id def validate(self): if self.kr_result_related_results: for k in self.kr_result_related_results: if k: k.validate() if self.objective_related_results: for k in self.objective_related_results: if k: k.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() result['krResultRelatedResults'] = [] if self.kr_result_related_results is not None: for k in self.kr_result_related_results: result['krResultRelatedResults'].append(k.to_map() if k else None) result['objectiveRelatedResults'] = [] if self.objective_related_results is not None: for k in self.objective_related_results: result['objectiveRelatedResults'].append(k.to_map() if k else None) if self.related_level is not None: result['relatedLevel'] = self.related_level if self.semantic_level is not None: result['semanticLevel'] = self.semantic_level if self.user_id is not None: result['userId'] = self.user_id return result def from_map(self, m: dict = None): m = m or dict() self.kr_result_related_results = [] if m.get('krResultRelatedResults') is not None: for k in m.get('krResultRelatedResults'): temp_model = OkrOpenRecommendResponseBodyOkrRecommendItemsKrResultRelatedResults() self.kr_result_related_results.append(temp_model.from_map(k)) self.objective_related_results = [] if m.get('objectiveRelatedResults') is not None: for k in m.get('objectiveRelatedResults'): temp_model = OkrOpenRecommendResponseBodyOkrRecommendItemsObjectiveRelatedResults() self.objective_related_results.append(temp_model.from_map(k)) if m.get('relatedLevel') is not None: self.related_level = m.get('relatedLevel') if m.get('semanticLevel') is not None: self.semantic_level = m.get('semanticLevel') if m.get('userId') is not None: self.user_id = m.get('userId') return self class OkrOpenRecommendResponseBody(TeaModel): def __init__( self, okr_recommend_items: List[OkrOpenRecommendResponseBodyOkrRecommendItems] = None, request_id: str = None, ): self.okr_recommend_items = okr_recommend_items # This parameter is required. self.request_id = request_id def validate(self): if self.okr_recommend_items: for k in self.okr_recommend_items: if k: k.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() result['okrRecommendItems'] = [] if self.okr_recommend_items is not None: for k in self.okr_recommend_items: result['okrRecommendItems'].append(k.to_map() if k else None) if self.request_id is not None: result['requestId'] = self.request_id return result def from_map(self, m: dict = None): m = m or dict() self.okr_recommend_items = [] if m.get('okrRecommendItems') is not None: for k in m.get('okrRecommendItems'): temp_model = OkrOpenRecommendResponseBodyOkrRecommendItems() self.okr_recommend_items.append(temp_model.from_map(k)) if m.get('requestId') is not None: self.request_id = m.get('requestId') return self class OkrOpenRecommendResponse(TeaModel): def __init__( self, headers: Dict[str, str] = None, status_code: int = None, body: OkrOpenRecommendResponseBody = None, ): self.headers = headers self.status_code = status_code self.body = body def validate(self): if self.body: self.body.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.status_code is not None: result['statusCode'] = self.status_code if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('statusCode') is not None: self.status_code = m.get('statusCode') if m.get('body') is not None: temp_model = OkrOpenRecommendResponseBody() self.body = temp_model.from_map(m['body']) return self