284 lines
11 KiB
Python
284 lines
11 KiB
Python
# -*- coding: utf-8 -*-
|
|
# This file is auto-generated, don't edit it. Thanks.
|
|
from Tea.core import TeaCore
|
|
|
|
from alibabacloud_tea_openapi.client import Client as OpenApiClient
|
|
from alibabacloud_tea_openapi import models as open_api_models
|
|
from alibabacloud_gateway_dingtalk.client import Client as GatewayClientClient
|
|
from alibabacloud_tea_util.client import Client as UtilClient
|
|
from alibabacloud_dingtalk.algo_1_0 import models as dingtalkalgo__1__0_models
|
|
from alibabacloud_tea_util import models as util_models
|
|
from alibabacloud_openapi_util.client import Client as OpenApiUtilClient
|
|
|
|
|
|
class Client(OpenApiClient):
|
|
"""
|
|
*\
|
|
"""
|
|
def __init__(
|
|
self,
|
|
config: open_api_models.Config,
|
|
):
|
|
super().__init__(config)
|
|
gateway_client = GatewayClientClient()
|
|
self._spi = gateway_client
|
|
self._endpoint_rule = ''
|
|
if UtilClient.empty(self._endpoint):
|
|
self._endpoint = 'api.dingtalk.com'
|
|
|
|
def nlp_word_distinguish_with_options(
|
|
self,
|
|
request: dingtalkalgo__1__0_models.NlpWordDistinguishRequest,
|
|
headers: dingtalkalgo__1__0_models.NlpWordDistinguishHeaders,
|
|
runtime: util_models.RuntimeOptions,
|
|
) -> dingtalkalgo__1__0_models.NlpWordDistinguishResponse:
|
|
"""
|
|
@summary 自然语言处理之关键词识别
|
|
|
|
@param request: NlpWordDistinguishRequest
|
|
@param headers: NlpWordDistinguishHeaders
|
|
@param runtime: runtime options for this request RuntimeOptions
|
|
@return: NlpWordDistinguishResponse
|
|
"""
|
|
UtilClient.validate_model(request)
|
|
body = {}
|
|
if not UtilClient.is_unset(request.attach_extract_decision_info):
|
|
body['attachExtractDecisionInfo'] = request.attach_extract_decision_info
|
|
if not UtilClient.is_unset(request.isv_app_id):
|
|
body['isvAppId'] = request.isv_app_id
|
|
if not UtilClient.is_unset(request.text):
|
|
body['text'] = request.text
|
|
real_headers = {}
|
|
if not UtilClient.is_unset(headers.common_headers):
|
|
real_headers = headers.common_headers
|
|
if not UtilClient.is_unset(headers.x_acs_dingtalk_access_token):
|
|
real_headers['x-acs-dingtalk-access-token'] = UtilClient.to_jsonstring(headers.x_acs_dingtalk_access_token)
|
|
req = open_api_models.OpenApiRequest(
|
|
headers=real_headers,
|
|
body=OpenApiUtilClient.parse_to_map(body)
|
|
)
|
|
params = open_api_models.Params(
|
|
action='NlpWordDistinguish',
|
|
version='algo_1.0',
|
|
protocol='HTTP',
|
|
pathname=f'/v1.0/algo/okrs/keywords/extract',
|
|
method='POST',
|
|
auth_type='AK',
|
|
style='ROA',
|
|
req_body_type='none',
|
|
body_type='json'
|
|
)
|
|
return TeaCore.from_map(
|
|
dingtalkalgo__1__0_models.NlpWordDistinguishResponse(),
|
|
self.execute(params, req, runtime)
|
|
)
|
|
|
|
async def nlp_word_distinguish_with_options_async(
|
|
self,
|
|
request: dingtalkalgo__1__0_models.NlpWordDistinguishRequest,
|
|
headers: dingtalkalgo__1__0_models.NlpWordDistinguishHeaders,
|
|
runtime: util_models.RuntimeOptions,
|
|
) -> dingtalkalgo__1__0_models.NlpWordDistinguishResponse:
|
|
"""
|
|
@summary 自然语言处理之关键词识别
|
|
|
|
@param request: NlpWordDistinguishRequest
|
|
@param headers: NlpWordDistinguishHeaders
|
|
@param runtime: runtime options for this request RuntimeOptions
|
|
@return: NlpWordDistinguishResponse
|
|
"""
|
|
UtilClient.validate_model(request)
|
|
body = {}
|
|
if not UtilClient.is_unset(request.attach_extract_decision_info):
|
|
body['attachExtractDecisionInfo'] = request.attach_extract_decision_info
|
|
if not UtilClient.is_unset(request.isv_app_id):
|
|
body['isvAppId'] = request.isv_app_id
|
|
if not UtilClient.is_unset(request.text):
|
|
body['text'] = request.text
|
|
real_headers = {}
|
|
if not UtilClient.is_unset(headers.common_headers):
|
|
real_headers = headers.common_headers
|
|
if not UtilClient.is_unset(headers.x_acs_dingtalk_access_token):
|
|
real_headers['x-acs-dingtalk-access-token'] = UtilClient.to_jsonstring(headers.x_acs_dingtalk_access_token)
|
|
req = open_api_models.OpenApiRequest(
|
|
headers=real_headers,
|
|
body=OpenApiUtilClient.parse_to_map(body)
|
|
)
|
|
params = open_api_models.Params(
|
|
action='NlpWordDistinguish',
|
|
version='algo_1.0',
|
|
protocol='HTTP',
|
|
pathname=f'/v1.0/algo/okrs/keywords/extract',
|
|
method='POST',
|
|
auth_type='AK',
|
|
style='ROA',
|
|
req_body_type='none',
|
|
body_type='json'
|
|
)
|
|
return TeaCore.from_map(
|
|
dingtalkalgo__1__0_models.NlpWordDistinguishResponse(),
|
|
await self.execute_async(params, req, runtime)
|
|
)
|
|
|
|
def nlp_word_distinguish(
|
|
self,
|
|
request: dingtalkalgo__1__0_models.NlpWordDistinguishRequest,
|
|
) -> dingtalkalgo__1__0_models.NlpWordDistinguishResponse:
|
|
"""
|
|
@summary 自然语言处理之关键词识别
|
|
|
|
@param request: NlpWordDistinguishRequest
|
|
@return: NlpWordDistinguishResponse
|
|
"""
|
|
runtime = util_models.RuntimeOptions()
|
|
headers = dingtalkalgo__1__0_models.NlpWordDistinguishHeaders()
|
|
return self.nlp_word_distinguish_with_options(request, headers, runtime)
|
|
|
|
async def nlp_word_distinguish_async(
|
|
self,
|
|
request: dingtalkalgo__1__0_models.NlpWordDistinguishRequest,
|
|
) -> dingtalkalgo__1__0_models.NlpWordDistinguishResponse:
|
|
"""
|
|
@summary 自然语言处理之关键词识别
|
|
|
|
@param request: NlpWordDistinguishRequest
|
|
@return: NlpWordDistinguishResponse
|
|
"""
|
|
runtime = util_models.RuntimeOptions()
|
|
headers = dingtalkalgo__1__0_models.NlpWordDistinguishHeaders()
|
|
return await self.nlp_word_distinguish_with_options_async(request, headers, runtime)
|
|
|
|
def okr_open_recommend_with_options(
|
|
self,
|
|
request: dingtalkalgo__1__0_models.OkrOpenRecommendRequest,
|
|
headers: dingtalkalgo__1__0_models.OkrOpenRecommendHeaders,
|
|
runtime: util_models.RuntimeOptions,
|
|
) -> dingtalkalgo__1__0_models.OkrOpenRecommendResponse:
|
|
"""
|
|
@summary Okr内容推荐
|
|
|
|
@param request: OkrOpenRecommendRequest
|
|
@param headers: OkrOpenRecommendHeaders
|
|
@param runtime: runtime options for this request RuntimeOptions
|
|
@return: OkrOpenRecommendResponse
|
|
"""
|
|
UtilClient.validate_model(request)
|
|
body = {}
|
|
if not UtilClient.is_unset(request.candidate_okr_items):
|
|
body['candidateOkrItems'] = request.candidate_okr_items
|
|
if not UtilClient.is_unset(request.corp_id):
|
|
body['corpId'] = request.corp_id
|
|
if not UtilClient.is_unset(request.dept_ids):
|
|
body['deptIds'] = request.dept_ids
|
|
if not UtilClient.is_unset(request.isv_app_id):
|
|
body['isvAppId'] = request.isv_app_id
|
|
if not UtilClient.is_unset(request.user_id):
|
|
body['userId'] = request.user_id
|
|
if not UtilClient.is_unset(request.words):
|
|
body['words'] = request.words
|
|
real_headers = {}
|
|
if not UtilClient.is_unset(headers.common_headers):
|
|
real_headers = headers.common_headers
|
|
if not UtilClient.is_unset(headers.x_acs_dingtalk_access_token):
|
|
real_headers['x-acs-dingtalk-access-token'] = UtilClient.to_jsonstring(headers.x_acs_dingtalk_access_token)
|
|
req = open_api_models.OpenApiRequest(
|
|
headers=real_headers,
|
|
body=OpenApiUtilClient.parse_to_map(body)
|
|
)
|
|
params = open_api_models.Params(
|
|
action='OkrOpenRecommend',
|
|
version='algo_1.0',
|
|
protocol='HTTP',
|
|
pathname=f'/v1.0/algo/okrs/recommend',
|
|
method='POST',
|
|
auth_type='AK',
|
|
style='ROA',
|
|
req_body_type='none',
|
|
body_type='json'
|
|
)
|
|
return TeaCore.from_map(
|
|
dingtalkalgo__1__0_models.OkrOpenRecommendResponse(),
|
|
self.execute(params, req, runtime)
|
|
)
|
|
|
|
async def okr_open_recommend_with_options_async(
|
|
self,
|
|
request: dingtalkalgo__1__0_models.OkrOpenRecommendRequest,
|
|
headers: dingtalkalgo__1__0_models.OkrOpenRecommendHeaders,
|
|
runtime: util_models.RuntimeOptions,
|
|
) -> dingtalkalgo__1__0_models.OkrOpenRecommendResponse:
|
|
"""
|
|
@summary Okr内容推荐
|
|
|
|
@param request: OkrOpenRecommendRequest
|
|
@param headers: OkrOpenRecommendHeaders
|
|
@param runtime: runtime options for this request RuntimeOptions
|
|
@return: OkrOpenRecommendResponse
|
|
"""
|
|
UtilClient.validate_model(request)
|
|
body = {}
|
|
if not UtilClient.is_unset(request.candidate_okr_items):
|
|
body['candidateOkrItems'] = request.candidate_okr_items
|
|
if not UtilClient.is_unset(request.corp_id):
|
|
body['corpId'] = request.corp_id
|
|
if not UtilClient.is_unset(request.dept_ids):
|
|
body['deptIds'] = request.dept_ids
|
|
if not UtilClient.is_unset(request.isv_app_id):
|
|
body['isvAppId'] = request.isv_app_id
|
|
if not UtilClient.is_unset(request.user_id):
|
|
body['userId'] = request.user_id
|
|
if not UtilClient.is_unset(request.words):
|
|
body['words'] = request.words
|
|
real_headers = {}
|
|
if not UtilClient.is_unset(headers.common_headers):
|
|
real_headers = headers.common_headers
|
|
if not UtilClient.is_unset(headers.x_acs_dingtalk_access_token):
|
|
real_headers['x-acs-dingtalk-access-token'] = UtilClient.to_jsonstring(headers.x_acs_dingtalk_access_token)
|
|
req = open_api_models.OpenApiRequest(
|
|
headers=real_headers,
|
|
body=OpenApiUtilClient.parse_to_map(body)
|
|
)
|
|
params = open_api_models.Params(
|
|
action='OkrOpenRecommend',
|
|
version='algo_1.0',
|
|
protocol='HTTP',
|
|
pathname=f'/v1.0/algo/okrs/recommend',
|
|
method='POST',
|
|
auth_type='AK',
|
|
style='ROA',
|
|
req_body_type='none',
|
|
body_type='json'
|
|
)
|
|
return TeaCore.from_map(
|
|
dingtalkalgo__1__0_models.OkrOpenRecommendResponse(),
|
|
await self.execute_async(params, req, runtime)
|
|
)
|
|
|
|
def okr_open_recommend(
|
|
self,
|
|
request: dingtalkalgo__1__0_models.OkrOpenRecommendRequest,
|
|
) -> dingtalkalgo__1__0_models.OkrOpenRecommendResponse:
|
|
"""
|
|
@summary Okr内容推荐
|
|
|
|
@param request: OkrOpenRecommendRequest
|
|
@return: OkrOpenRecommendResponse
|
|
"""
|
|
runtime = util_models.RuntimeOptions()
|
|
headers = dingtalkalgo__1__0_models.OkrOpenRecommendHeaders()
|
|
return self.okr_open_recommend_with_options(request, headers, runtime)
|
|
|
|
async def okr_open_recommend_async(
|
|
self,
|
|
request: dingtalkalgo__1__0_models.OkrOpenRecommendRequest,
|
|
) -> dingtalkalgo__1__0_models.OkrOpenRecommendResponse:
|
|
"""
|
|
@summary Okr内容推荐
|
|
|
|
@param request: OkrOpenRecommendRequest
|
|
@return: OkrOpenRecommendResponse
|
|
"""
|
|
runtime = util_models.RuntimeOptions()
|
|
headers = dingtalkalgo__1__0_models.OkrOpenRecommendHeaders()
|
|
return await self.okr_open_recommend_with_options_async(request, headers, runtime)
|