# app.py print("[DEBUG] main.py started") import sys sys.stdout.flush() import json import threading import requests import asyncio import json import threading import math from flask import Flask, request, jsonify from utils.springerLink import springerLink # 你的爬虫接口 from utils.arxiv import arxiv # 你的爬虫接口 from utils.pubmed import pubmed # 你的爬虫接口 from utils.wangfang import wangfang # 你的爬虫接口 from utils.zhiwang import zhiwang # 你的爬虫接口 from utils.weipu import weipu # 你的爬虫接口 from utils.ieeeXplore import ieeeXplore from parseApi.api import parse_ieee_results_all_categories_async from flask_cors import CORS from config import MAX_CONCURRENT_BROWSERS,api_info app = Flask(__name__) CORS(app, resources={r"/*": {"origins": "*"}}, supports_credentials=True, allow_headers="*") # 允许所有跨域请求 semaphore = threading.Semaphore(MAX_CONCURRENT_BROWSERS) # 假设 SITE_FUNCTIONS 分为中文网站和英文网站函数列表 CHINESE_SITE_FUNCTIONS = [zhiwang, wangfang, weipu] ENGLISH_SITE_FUNCTIONS = [ieeeXplore, arxiv, pubmed] def translate_text(text): """ 输入: text_input: 一句话或中文关键词列表 (str) api_info: dict, 包含 base_url, api_key, model 输出: dict: {"chinese": [...], "english": [...]} """ if not text: return {"chinese": [], "english": []} # 构造 prompt prompt = ( "你是科研助手,输入是一句话或中文关键词列表。" "请从输入中理解语义,提取与科研论文主题最相关、最核心的中文主题,并翻译为英文。" "只保留1~2个最核心主题,不要加入无关内容。" "输出必须严格遵守 JSON 格式,不允许有额外文字或符号:{\"chinese\": [...], \"english\": [...]}。\n" "示例输入输出:\n" "输入: '我想获取基于深度学习的图像识别方面的研究'\n" "输出: {\"chinese\": [\"基于深度学习的图像识别\"], \"english\": [\"Deep Learning-based Image Recognition\"]}\n" "输入: '图像识别在深度学习方面的研究'\n" "输出: {\"chinese\": [\"基于深度学习的图像识别\"], \"english\": [\"Deep Learning-based Image Recognition\"]}\n" "输入: '自然语言处理模型在文本分类中的应用'\n" "输出: {\"chinese\": [\"自然语言处理文本分类\"], \"english\": [\"NLP Text Classification\"]}\n" "输入: '强化学习在自动驾驶决策中的最新进展'\n" "输出: {\"chinese\": [\"强化学习自动驾驶决策\"], \"english\": [\"Reinforcement Learning for Autonomous Driving Decision-Making\"]}\n" "输入: '使用图神经网络进行社交网络分析的研究'\n" "输出: {\"chinese\": [\"图神经网络社交网络分析\"], \"english\": [\"Graph Neural Networks for Social Network Analysis\"]}\n" "输入: '我想研究深度强化学习在机器人控制中的应用'\n" "输出: {\"chinese\": [\"深度强化学习机器人控制\"], \"english\": [\"Deep Reinforcement Learning for Robot Control\"]}\n" f"现在请对输入提取核心主题:\n输入: {text}" ) url = f"{api_info['base_url']}/chat/completions" headers = { "Content-Type": "application/json", "Authorization": f"Bearer {api_info['api_key']}" } payload = { "model": api_info["model"], "messages": [{"role": "user", "content": prompt}], "max_output_tokens": 512 } try: resp = requests.post(url, headers=headers, json=payload, timeout=30) resp.raise_for_status() result = resp.json() text_output = result.get("choices", [{}])[0].get("message", {}).get("content", "") if not text_output: return {"chinese": [text], "english": []} try: parsed = json.loads(text_output) chinese = parsed.get("chinese", [text]) english = parsed.get("english", []) return {"chinese": chinese, "english": english} except json.JSONDecodeError: return {"chinese": [text], "english": []} except requests.RequestException as e: print(f"[ERROR] 请求失败: {e}") return {"chinese": [text], "english": []} async def crawl_single(keyword, site_func, limit, sort): loop = asyncio.get_event_loop() try: print(f"[DEBUG] Opening browser for {site_func.__name__} with keyword '{keyword}'") result = await loop.run_in_executor( None, lambda: site_func(keyword, limit, sort_options=sort) ) print(f"[DEBUG] Finished crawling {site_func.__name__} with keyword '{keyword}'") return result except Exception as e: print(f"[ERROR] {site_func.__name__} with keyword '{keyword}' failed: {e}") return [] async def crawl_and_parse(kw, site_func, limit, sort, parse_flag): try: results = await crawl_single(kw, site_func, limit, sort) if parse_flag and results: print("解析之前的数据:", results) parsed_results = await parse_ieee_results_all_categories_async(results) print(f"[DEBUG] 解析结果: {parsed_results}") return parsed_results or [] return results or [] except Exception as e: print(f"[ERROR] {site_func.__name__} with keyword '{kw}' failed: {e}") return [] # crawl_all_keywords 不需要改太多,只需保持 semaphore 控制并发即可 async def crawl_all_keywords(chinese_keywords, english_keywords, limit, sort, max_concurrent=MAX_CONCURRENT_BROWSERS, parse_flag=True): all_tasks = [] # 中文 for kw in chinese_keywords: for func in CHINESE_SITE_FUNCTIONS: all_tasks.append((kw, func)) # 英文 for kw in english_keywords: for func in ENGLISH_SITE_FUNCTIONS: all_tasks.append((kw, func)) semaphore = asyncio.Semaphore(max_concurrent) async def sem_task(kw, func): async with semaphore: return await crawl_and_parse(kw, func, limit, sort, parse_flag) tasks = [sem_task(kw, func) for kw, func in all_tasks] all_results = await asyncio.gather(*tasks, return_exceptions=True) final_results = [] weipu_empty = [] # 记录哪些关键词的 weipu 结果为空 # 处理第一次抓取的结果 for (kw, func), r in zip(all_tasks, all_results): if isinstance(r, dict): for category, papers in r.items(): final_results.extend(papers) elif isinstance(r, list): final_results.extend(r) # 如果是 weipu 且返回空列表,记录下来 if func is weipu and not r: weipu_empty.append(kw) # ---- 仅增加的逻辑:对 weipu 结果为空的关键词重试 ---- for kw in weipu_empty: try: print(f"[INFO] Weipu empty for '{kw}', retrying...") retry_res = await crawl_and_parse(kw, weipu, limit, sort, parse_flag) if isinstance(retry_res, dict): for category, papers in retry_res.items(): final_results.extend(papers) elif isinstance(retry_res, list): final_results.extend(retry_res) except Exception as e: print(f"[ERROR] Weipu retry failed for '{kw}': {e}") # --------------------------------------------------------- return final_results @app.route("/crawl", methods=["POST", "OPTIONS"]) def crawl(): if request.method == "OPTIONS": return jsonify({"status": "ok"}), 200 data = request.json if not data or "texts" not in data: return jsonify({"success": False, "error": "Missing 'texts' field"}), 400 text_input = data["texts"] parse_flag = data.get("parse", True) print("自然语言处理文本",text_input) sort = data.get("sort", ["relevance"]) max_concurrent = int(data.get("max_concurrent", 3)) max_retries = 3 translated = translate_text(text_input) chinese_keywords = translated.get("chinese", []) english_keywords = translated.get("english", []) retry_count = 0 while not english_keywords and retry_count < max_retries: retry_count += 1 retry_translated = translate_text(text_input) # 中文关键词保留第一次或最新结果 chinese_keywords = retry_translated.get("chinese", chinese_keywords) english_keywords = retry_translated.get("english", []) if english_keywords: break # 获取到英文关键词,停止重试 print(translated) raw_limit = data.get("limit") if raw_limit is not None: raw_limit = int(raw_limit) total_tasks = len(chinese_keywords) * 3 + len(english_keywords) * 3 limit = max(1, math.ceil(raw_limit / total_tasks)) # 每个网页的 limit 至少 1 else: limit=10 loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) async def main(): results = await crawl_all_keywords(chinese_keywords, english_keywords, limit, sort, max_concurrent, parse_flag) return results try: final_results = loop.run_until_complete(main()) return jsonify({"success": True, "results": final_results}) except Exception as e: return jsonify({"success": False, "error": str(e)}), 500 if __name__ == "__main__": app.run(host="0.0.0.0", port=5000, debug=False, use_reloader=False)